A-25

Appendix

A Preliminary Investigation into
An Evolutionary Boundary

FOURTH-LEVEL GROUPS IN THE FIRST YEAR, continued

As in the previous program for finding the populations of 2-B and 3-D at the
end of the first "year", we now calculate fourth-level groups, but from
3-E:
4-M, 4-N, and 4-O  ---  The
baggage principle now applies to 4-N and 4-O.

rem  finds populations of 3-E, 4-M, 4-N, and 4-O at the end of "year one"
rem  "population" means 2-B, while E3 and M4 refer to 3-E and 4-M, etc
countit = 0
original = 5.49450549*10^16                       
rem          5.49450549*10^16  2-B per saturation cycle of 1-A
population =  0
E3 = 0       
M4 = 0
N4 = 0
O4 = 0               
[start]
population = population + original
E3 = E3 + (population/(1.82 * 10^12))   
M4 = M4 + (E3/(1.82 * 10^12))     
M4 = M4 * 1.01
N4 = N4 + (E3/(1.82 * 10^12))
N4 = N4 * .9999
rem   4-N and 4-O have PAES = 3, therefore the baggage principle begins to take effect
O4 = O4 + (E3/(1.96 * 10^14))
O4 = O4 * 1.01
O4 = O4 * .9999
countit = countit + 1                           
IF countit = 1000 then [end]                 
GOTO [start]     
[end]     
print E3
print M4
print N4
print O4                 
end

answers:
1.51098901*10e10    (3-E)
357.173664   or about 357 4-M
2.70474952   or about    3  4-N
3.09209255    or about     3  4-O

Main Pages

Links

http://www.laattorneyvideo.com/nonlegal/e-boundary/appendix/page25.html